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Abstract. Let G = (V,E) be a simple graph without isolated vertices and minimum degree δ(G), and let
k ∈ {1 − dδ(G)/2e , . . . , bδ(G)/2c} be an integer. Given a set M ⊂ V, a vertex v of G is said to be k-controlled
by M if δM(v) ≥ δ(v)

2 + k where δM(v) represents the quantity of neighbors v has in M and δ(v) the degree
of v. The set M is called a k-monopoly if it k-controls every vertex v of G. The minimum cardinality of
any k-monopoly is the k-monopoly number of G. In this article we study the k-monopoly number of direct
product graphs. Specifically we obtain tight lower and upper bounds for the k-monopoly number of direct
product graphs in terms of the k-monopoly numbers of its factors. Moreover, we compute the exact value
for the k-monopoly number of several families of direct product graphs.

1. Introduction and Preliminaries

Throughout this article we consider simple graphs G = (V,E). Given a set S ⊂ V and a vertex v ∈ V,
we denote by δS(v) the number of neighbors v has in S. If S = V, then δV(v) is the degree of v and we just
write δ(v). The minimum degree of G is denoted by δ(G) and the maximum degree by ∆(G). Given an integer
k ∈

{
1 −

⌈
δ(G)

2

⌉
, . . . ,

⌊
δ(G)

2

⌋}
and a set M, a vertex v of G is said to be k-controlled by M if δM(v) ≥ δ(v)

2 + k. The set
M is called a k-monopoly if it k-controls every vertex v of G. The minimum cardinality of any k-monopoly is
the k-monopoly number and it is denoted byMk(G). A monopoly of cardinalityMk(G) is called aMk(G)-set.
In particular notice that for a graph with a leaf (vertex of degree one), there exist only 0-monopolies and
the neighbor of every leaf is in eachM0(G)-set. Monopolies in graphs were defined first in [10] and they
were generalized to k-monopolies recently in [9]. Other studies about monopolies in graphs and some of
its applications can be found in [2, 7, 11, 12, 16].

If M represents the complement of the set M, then we can use the following equivalent definition for
a k-monopoly in G. A set of vertices M is a k-monopoly in G if and only if for every vertex v of G,
δM(v) ≥ δM(v) + 2k (we call this expression the k-monopoly condition for v) and we say that M is a k-monopoly
in G if and only if every v of G satisfies the k-monopoly condition for M.
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Monopolies in graphs have a quite long range of applications in several problems related to overcoming
failures, since they frequently have some common approaches around the notion of majorities, for instance
to consensus problems [1], diagnosis problems [13] or voting systems [3], among other applications and
references. Moreover, monopolies in graphs are closely related to different parameters in graphs. According
to several connections which exist between monopolies, global alliances and signed domination in graphs
(see [9]), it is known that the complexity of computing the k-monopoly number of a graph is an NP-complete
problem for k ≥ 0, while this is an open problem for k < 0. In this sense, it is desirable to reduce the problem
of computing the k-monopoly number of some graph classes to other ones in which could be easier to
compute the value of such a parameter. That is the case of product graphs. In this article we obtain several
relationships between the k-monopoly number of product graphs and the k-monopoly number of its factors.

We use for a graph G standard notations, NG(1) for the open neighborhood {1′ : 11′ ∈ E(G)} and NG[1] for
the closed neighborhood NG(1) ∪ {1}. Let S ⊂ V(G). Neighborhoods over S form a subpartition of a graph G
if NG(u) ∩ NG(v) = ∅ for every different u, v ∈ S. A set S forms a maximum subpartition if neighborhoods
centered in S form a subpartition, where V(G)−

⋃
v∈S NG(v) has the minimum cardinality among all possible

sets S′ ⊂ V(G) which neighborhoods centered in S′ form a subpartition. In the extreme case, where⋃
v∈S NG(v) = V(G), we call G an efficient open domination graph and the set S an efficient open dominating set

of G. Efficient open domination graphs were first studied in [4]. The work was continued in [5], where all
efficient open domination trees have been inductively described. Also, there was proved that the problem
of deciding whether G is an efficient open domination graph or not is NP-complete. Recently in [14] the
efficient open dominating sets of Cayley graphs were considered and a discussion with respect to product
graphs can be found in [8]. Clearly not all graphs are efficient open domination graphs.

One lower bound of this work is based on the following observation.

Observation 1.1. Let G be a graph of minimum degree δ. If S ⊂ V(G) forms a subpartition of G, then for any
k ∈

{
1 −

⌈
δ
2

⌉
, . . . ,

⌊
δ
2

⌋}
Mk(G) ≥ k|S| +

∑
v∈S

⌈
δ(v)

2

⌉
.

The Observation clearly holds, since S forms a subpartition. That is, the condition δM(v) ≥ δ(v)
2 + k is

fulfilled for all vertices of S, but not necessarily for all vertices of G. Hence the lower bound follows. Clearly
we can expect the best results for maximum subpartitions and, particularly, in efficient open domination
graphs. The following consequence is useful to obtain some other results (in particular for regular graphs).

Corollary 1.2. Let G be a graph of minimum degree δ. If S ⊂ V(G) forms a subpartition of G, then for any
k ∈

{
1 −

⌈
δ
2

⌉
, . . . ,

⌊
δ
2

⌋}
Mk(G) ≥ |S|

(⌈
δ
2

⌉
+ k

)
.

The following general result will also be useful to obtain a lower bound on the monopoly number of
direct product graphs.

Proposition 1.3. Let G be a graph order n, minimum degree δ and maximum degree ∆. Then, for any k ∈{
1 −

⌈
δ
2

⌉
, . . . ,

⌊
δ
2

⌋}
Mk(G) ≥

⌈ n
∆

(⌈
δ
2

⌉
+ k

)⌉
.

Proof. Let S be a Mk(G)-set and let v be a vertex of G. Notice that v appears at most ∆ times in the
neighborhoods of vertices u , v. Also, we have that δS(v) ≥ dδ/2e + k. Thus,

|S| ≥
1
∆

∑
v∈V(G)

δS(v) ≥
1
∆

∑
v∈V(G)

(⌈
δ
2

⌉
+ k

)
=

n
∆

(⌈
δ
2

⌉
+ k

)
,

and the result follows.
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Various graph products have been investigated in the last few decades and a rich theory involving the
structure and recognition of classes of these graphs has emerged, cf. the new book [6]. The most studied
graph products are the Cartesian product, the strong product, the direct product, and the lexicographic
product which are also called standard products. The other standard approach to graph products is to deduce
properties of a product with respect to its factors. The latest aproach is followed also in this work.

The direct product G × H of graphs G and H is a graph with V(G × H) = V(G) × V(H). Two vertices
(1, h) and (1′, h′) are adjacent in G × H whenever 11′ ∈ E(G) and hh′ ∈ E(H). For a fix h ∈ V(H) we call
Gh = {(1, h) ∈ G ×H : 1 ∈ V(G)} a G-layer in G ×H. H-layers 1H for a fix 1 ∈ V(G) are defined symmetrically.
Notice that in direct product of graphs without loops, the subgraphs induced by both a G-layer or an H-layer
represent a graph without edges on |V(G)| or |V(H)| vertices, respectively. The map pG : V(G × H) → V(G)
defined by pG((1, h)) = 1 is called a projection map onto G. Similarly, we define pH the projection map onto
H. Projections are defined as maps between vertices, but many times it is more comfortably to see them
as maps between graphs. In this case we observe the subgraphs induced by A ⊆ V(G × H) and pX(A) for
X ∈ {G,H}.

The open neighborhoods of vertices in direct product are nicely connected to open neighborhoods of
projections to the factors. Namely, NG×H(1, h) = NG(1) × NH(h) for every vertex (1, h) ∈ V(G) × V(H). The
direct product is not always a connected graph even if both factors are connected. Indeed, G × H is a
connected graph if and only if at least one of the graphs G or H is non bipartite. Moreover, if both G and
H are bipartite, G × H has exactly two components (see [6, 15]) where the vertices (1, h) and (1, h′) with
hh′ ∈ E(H) are in different components, as are (1, h) and (1′, h) with 11′ ∈ E(G). In particular, a graph G ×H
has an isolated vertex if and only if there exists an isolated vertex in G or in H. Thus, we should omit graphs
with isolated vertices.

2. The Upper Bounds

In this section we prove two upper bounds forMk(G×H) with respect to the properties of factors G and H.

Theorem 2.1. Let G,H be two graphs without isolated vertices and let ` = min{δ(G), δ(H)}. For any k ∈ {1 −⌈
`
2

⌉
, . . . ,

⌊
`
2

⌋
} we have

Mk(G ×H) ≤ min{Mk(G)|V(H)|, |V(G)|Mk(H)}.

Proof. Let (1, h) be an arbitrary vertex of G × H and let MG and MH be a Mk(G)-set and a Mk(H)-set,
respectively. We can split NG×H(1, h) = (A × C) ∪ (B × C) ∪ (A × D) ∪ (B × D) where A = NG(1) ∩ MG,
B = NG(1)∩MG, C = NH(h)∩MH and D = NH(h)∩MH. Clearly |A×C| = δMH (h)δMG (1), |B×C| = δMG

(1)δMH (h),
|A ×D| = δMG (1)δMH

(h) and |B ×D| = δMG
(1)δMH

(h).
Notice that δMH (h) ≥ δMH

(h) + 2k since MH is a Mk(H)-set. Hence, it follows that δMH (h) ≥ δMH
(h) +

2k
δMG (1)+δMG

(1) while there are no isolated vertices in G (note that the equality can be attained only if k = 0 and

δMH (h) = δMH
(h)). Thus we obtain

δMH (h)(δMG (1) + δMG
(1)) ≥ δMH

(h)(δMG (1) + δMG
(1)) + 2k

and finally

δMH (h)δMG (1) + δMH (h)δMG
(1) ≥ δMH

(h)δMG (1) + δMH
(h)δMG

(1) + 2k.

If we use the language of sets, we get

|A × C| + |B × C| ≥ |A ×D| + |B ×D| + 2k

and for M = V(G)×MH this means δM(1, h) ≥ δM(1, h)+2k. ThusMk(G×H) ≤ |V(G)|Mk(H). By commutativity
of direct product and symmetry of operations we also derive δM′ (1, h) ≥ δM′ (1, h) + 2k for M′ = MG × V(H).
Therefore,Mk(G ×H) ≤ Mk(G)|V(H)|which ends the proof.
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From the proof above we immediately see that the upper bound from Theorem 2.1 behaves better for
k close to 0 and it is the best when k = 0. Also, the bound is not defined for all k-monopolies where
k ∈

{
1 −

⌈
δ(G×H)

2

⌉
, . . . ,

⌊
δ(G×H)

2

⌋}
. For instance M⌊

δ(G×H)
2

⌋(G)-sets and M⌊
δ(G×H)

2

⌋(H)-sets do not exist whenever

δ(G) > 1 and δ(H) > 1.
Next we present another upper bound, which sometimes behaves better than the bound of Theorem 2.1.

Theorem 2.2. For any graphs G and H of order r and t, respectively,

M2k2 (G ×H) ≤ rt + 2Mk(G)Mk(H) − rMk(H) − tMk(G).

Proof. Let SG and SH be aMk(G)-set and aMk(H)-set, respectively. We shall prove that S = (SG×SH)∪(SG×SH)
is a (2k2)-monopoly in G ×H. It is clear that S is a dominating set in G ×H. Let (u, v) be a vertex of G ×H.
Thus,

δS(u, v) = δSG×SH (u, v) + δSG×SH
(u, v)

= δSG (u)δSH (v) + δSG
(u)δSH

(v)

= δSG
(u)δSH (v) + δSG (u)δSH

(v) − δSG
(u)δSH (v) − δSG (u)δSH

(v)+

+ δSG (u)δSH (v) + δSG
(u)δSH

(v)

= δSG×SH
(u, v) + δSG×SH

(u, v) + (δSG (u) − δSG
(u))(δSH (v) − δSH

(v))

≥ δS(u, v) + (δSG
(u) + 2k − δSG

(u))(δSH
(v) + 2k − δSH

(v))

= δS(u, v) + 4k2.

Therefore, S is (2k2)-monopoly in G ×H and the result follows.

3. The Lower Bounds

Recently, in [8], all efficient open domination graphs among direct products have been characterized as
those for which both factors are efficient open domination graphs. We can not generalized this result to
maximum subpartitions completely, but in the part that is actually needed.

Proposition 3.1. Let G and H be graphs. If SG and SH form maximum subpartitions of G and H, respectively, then
S = SG × SH forms a maximum subpartition of G ×H.

Proof. Let SG and SH be maximum subpartitions of G and H, respectively, and let S = SG × SH. Since
NG×H(1, h) = NG(1) × NH(h) holds, we have NG×H(1, h) ∩ NG×H(1′, h′) = ∅ for every different vertices (1, h)
and (1′, h′) from S. If S is not a maximum partition of G × H, then there exists (1, h) < S with NG×H(1, h) ∩
NG×H(1′, h′) = ∅ for every (1′, h′) ∈ S. Since SG and SH are maximum partitions of G and H, respectively,
there exists u ∈ SG and v ∈ SH, such that NG(1)∩NG(u) , ∅ and NH(h)∩NH(v) , ∅. If w ∈ NG(1)∩NG(u) and
z ∈ NH(h) ∩ NH(v), then (w, z) ∈ NG×H(1, h) ∩ NG×H(u, v), which is a contradiction. Hence S is a maximum
partition of G ×H.

The following theorem follows directly from the Observation 1.1, Proposition 3.1 and the fact that the
degree in the direct product is a product of degrees in factors.

Theorem 3.2. Let G and H be graphs without isolated vertices and let ` = δ(G)δ(H). If SG and SH form maximum
subpartitions of G and H, respectively, then for every k ∈

{
1 −

⌈
`
2

⌉
, . . . ,

⌊
`
2

⌋}
,

Mk(G ×H) ≥ k|SG||SH | +
∑

(1,h)∈SG×SH

⌈
δG(1)δH(h)

2

⌉
.
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An interesting consequence of the theorem above is the next one, which sometimes gives better results
than the bound of Theorem 3.2.

Corollary 3.3. Let G and H be two graphs without isolated vertices and let ` = δ(G)δ(H). If SG and SH form
maximum subpartitions of G and H, respectively, then for every k ∈

{
1 −

⌈
`
2

⌉
, . . . ,

⌊
`
2

⌋}
,

Mk(G ×H) ≥ |SG||SH |

(⌈
δ(G)δ(H)

2

⌉
+ k

)
.

Another lower bound for the k-monopoly number of direct product graph is obtained as a consequence
of Proposition 1.3.

Corollary 3.4. Let G and H be two graphs without isolated vertices of order n and m, respectively. For any
k ∈

{
1 −

⌈
δ(G)δ(H)

2

⌉
, . . . ,

⌊
δ(G)δ(H)

2

⌋}
we have

Mk(G ×H) ≥
⌈

mn
∆(G)∆(H)

(⌈
δ(G)δ(H)

2

⌉
+ k

)⌉
.

4. Exact Values

The upper and lower bounds presented in the two sections above are tight as we will see in this next
section. The following propositions ([9]) about the monopoly number of some families of graphs are useful
to prove our results.

Proposition 4.1. [9] For every complete graph Kn and every k ∈
{
1 −

⌈
δ(G)

2

⌉
, . . . ,

⌊
δ(G)

2

⌋}
,

Mk(Kn) =

⌈
n + 2k + 1

2

⌉
.

Proposition 4.2. [9] For every integer n ≥ 3,

M0(Cn) =M0(Pn) =


n
2 if n ≡ 0 mod 4,

n+2
2 if n ≡ 2 mod 4,

n+1
2 if n ≡ 1 mod 4 or n ≡ 3 mod 4.

Proposition 4.3. [9] For every complete bipartite graph Kr,t and every k ∈
{
1 −

⌈
δ(Kr,t)

2

⌉
, . . . ,

⌊
δ(Kr,t)

2

⌋}
,

Mk(Kr,t) =

⌈
r + 2k

2

⌉
+

⌈
t + 2k

2

⌉
.

Next we present several formulas for the 0-monopoly number of some direct product graphs. The
following four results follow from Theorem 2.2 (or 2.1), Corollary 3.4 and Propositions 4.1, 4.2 and 4.3. We
present the proof of the first one and we omit the other ones due to its similarity.

Proposition 4.4. If r and t are odd integers greater than 2, then

M0(Kr × Kt) =
⌈ rt

2

⌉
.
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Proof. If r, t are odd integers, then r − 1, t − 1 are even numbers. Now, since Kr × Kt is a regular graph of
degree (r − 1)(t − 1), Corollary 3.4 leads to the following.

M0(Kr × Kt) ≥
⌈

rt
(r − 1)(t − 1)

⌈
(r − 1)(t − 1)

2

⌉⌉
=

⌈ rt
2

⌉
.

On the other hand, sinceM0(Kn) =
⌈

n+1
2

⌉
(Lemma 4.1) and r + 1, t + 1 are even numbers, by Theorem 2.2 we

have that

M0(Kr × Kt) ≤ rt + 2
r + 1

2
t + 1

2
− r

t + 1
2
− t

r + 1
2

=
rt + 1

2
=

⌈ rt
2

⌉
.

Proposition 4.5. If r ≥ 2 is any integer and t ≡ 0 (mod 4), then

M0(Kr × Ct) =
rt
2
.

Proposition 4.6. If r and t are positive even integers, then

M0(Kr,r × Kt,t) = 2rt.

Proposition 4.7. If r is a positive even integer and t is a positive odd integer, then

M0(Kr,r × Kt) = rt.

From [4] we know that a path Pn is an efficient open domination graph if and only if n . 1 (mod 4) and
a cycle Cn is an efficient open domination graph if and only if n ≡ 0 (mod 4). The following observations
are useful to prove our results.

Observation 4.8.

(i) If n ≡ 0 (mod 4), then every vertex belonging to an efficient open dominating set in Pn has degree two.
(ii) If n ≡ 2 (mod 4), then all but two vertices belonging to an efficient open dominating set in Pn have degree two.

The other two vertices have degree one.
(iii) If n ≡ 3 (mod 4), then all but one vertex belonging to an efficient open dominating set in Pn have degree two.

The other vertex has degree one.

Observation 4.9. Let G be a path or a cycle. If G is an efficient open domination graph with an efficient open
dominating set S, thenM0(G) = |S|.

Proof. Since G has maximum degree two,M0(G) ≤ |S| follows from the fact that every vertex of G has one
neighbor in S. On the other hand,M0(G) ≥ |S| follows from Observation 1.1.

Theorem 4.10. If G and H are two efficient open domination graphs being paths or cycles of order r and t, respectively,
then

M0(G ×H) =



rt
2 , if r ≡ 0 (mod 4) or t ≡ 0 (mod 4),

rt+4
2 , if r, t ≡ 2 (mod 4),

rt+2
2 , if r ≡ 2 (mod 4) and t ≡ 3 (mod 4),

rt+1
2 , if r, t ≡ 3 (mod 4).
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Proof. Let SG and SH be efficient open dominating sets of G and H, respectively. From Theorem 3.2 we have
thatM0(G×H) ≥

∑
(1,h)∈SG×SH

⌈
δG(1)δH(h)

2

⌉
. From Observation 4.9 we have that |SG×SH | =M0(G)M0(H). Also,

by Observation 4.8, SG and SH can have at most two vertices of degree one in G or H, respectively. Thus, to
obtain a lower bounds forM0(G × H) we only need to count the number of vertices of SG and SH having
degree one or two. We consider the following cases.

Case 1: r, t ≡ 0 (mod 4). By Observation 4.8 (when G or H is a path), every vertex of SG and SH has
degree two. Thus, we have

M0(G ×H) ≥
∑

(1,h)∈SG×SH

⌈
δG(1)δH(h)

2

⌉
= 2M0(G)M0(H).

Since r, t ≡ 0 (mod 4), Proposition 4.2 leads toM0(G) = r/2 andM0(H) = t/2. Thus, from the expression
above we obtain thatM0(G×H) ≥ rt

2 . By Theorem 2.1 we obtain thatM0(G×H) ≤ min{rM0(H), tM0(G)} = rt
2 .

Case 2: r ≡ 0 (mod 4) and t ≡ 2 (mod 4). Hence H must be a path, every vertex of SG has degree two
and, by Observation 4.8, all but two vertices of SH, say x, y, have degree two and x and y have degree one.
Thus,

M0(G ×H) ≥
∑

(1,h)∈SG×SH

⌈
δG(1)δH(h)

2

⌉
=

∑
(1,h)∈(SG×SH)−(SG×{x,y})

2 +
∑

(1,h)∈SG×{x,y}

1

= 2M0(G)(M0(H) − 2) + 2M0(G)
= 2M0(G)(M0(H) − 1).

Now, from Lemma 4.2 we have thatM0(G) = r/2 andM0(H) = t+2
2 , which lead toM0(G ×H) ≥ rt

2 . Again,
by using the Theorem 2.1 we obtain thatM0(G ×H) ≤ min{rM0(H), tM0(G)} = rt

2 .

Case 3: r ≡ 0 (mod 4) and t ≡ 3 (mod 4). Hence H must be a path, every vertex of SG has degree two
and, by Observation 4.8, all but one vertex of SH, say w, have degree two and w has degree one. Thus,

M0(G ×H) ≥
∑

(1,h)∈SG×SH

⌈
δG(1)δH(h)

2

⌉
=

∑
(1,h)∈(SG×SH)−(SG×{w})

2 +
∑

(1,h)∈SG×{w}

1

= 2M0(G)(M0(H) − 1) +M0(G)
= 2M0(G)M0(H) −M0(G).

Now, from Lemma 4.2 we have thatM0(G) = r/2 andM0(H) = t+1
2 , which lead toM0(G ×H) ≥ rt

2 . Again,
by using the Theorem 2.1 we obtain thatM0(G ×H) ≤ min{rM0(H), tM0(G)} = rt

2 .

Case 4: r, t ≡ 2 (mod 4). Hence G and H must be paths. So, by Observation 4.8, all but two vertices of
SG, say x, y, have degree two and x and y have degree one. By the same reason all but two vertices of SH,
say u, v, have degree two and u and v have degree one. Thus, if B1 = (SG × SH) − ({x, y} × SH) − (SG × {u, v}),
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B2 = (SG × {u, v}) − ({x, y} × {u, v}), B3 = ({x, y} × SH) − ({x, y} × {u, v}) and B4 = {x, y} × {u, v}, then

M0(G ×H) ≥
∑

(1,h)∈SG×SH

⌈
δG(1)δH(h)

2

⌉
=

∑
(1,h)∈B1

2 +
∑

(1,h)∈B2

1 +
∑

(1,h)∈B3

1 +
∑

(1,h)∈B4

⌈1
2

⌉
= 2(M0(G) − 2)(M0(H) − 2) + 2(M0(G) − 2) + 2(M0(H) − 2) + 4

⌈1
2

⌉
= 2M0(G)M0(H) − 2M0(G) − 2M0(H) + 4.

Now, from Lemma 4.2 we have thatM0(G) = r+2
2 andM0(H) = t+2

2 , which lead toM0(G ×H) ≥ rt+4
2 .

On the other hand, from Theorem 2.2 we have that

M0(G ×H) ≤ rt + 2
r + 2

2
t + 2

2
− r

t + 2
2
− t

r + 2
2

=
rt + 4

2
,

which completes the proof of this case.

Case 5: r ≡ 2 (mod 4) and t ≡ 3 (mod 4). Hence G and H must be paths. So, by Observation 4.8, all
but two vertices of SG, say a, b, have degree two and a amd b have degree one. Similar all but one vertex
of SH, say c, have degree two and c have degree one. Thus, if A1 = (SG × SH) − ({a, b} × SH) − (SG × {c}),
A2 = (SG × {c}) − ({a, b} × {c}), A3 = ({a, b} × SH) − ({a, b} × {c}) and A4 = {a, b} × {c}, then

M0(G ×H) ≥
∑

(1,h)∈SG×SH

⌈
δG(1)δH(h)

2

⌉
=

∑
(1,h)∈A1

2 +
∑

(1,h)∈A2

1 +
∑

(1,h)∈A3

1 +
∑

(1,h)∈A4

⌈1
2

⌉
= 2(M0(G) − 2)(M0(H) − 1) + (M0(G) − 2) + 2(M0(H) − 1) + 2

⌈1
2

⌉
= 2M0(G)M0(H) −M0(G) − 2M0(H) + 2.

Now, from Lemma 4.2 we have thatM0(G) = r+2
2 andM0(H) = t+1

2 , which lead toM0(G ×H) ≥ rt+2
2 .

Similarly to Case 4, from Theorem 2.2 we have that

M0(G ×H) ≤ rt + 2
r + 2

2
t + 1

2
− r

t + 1
2
− t

r + 2
2

=
rt + 2

2
,

which completes the proof of this case.

Case 6: r, t ≡ 3 (mod 4), then G and H must be paths. Hence, by Observation 4.8, all but one vertex of SG,
say a, have degree two and a has degree one. Also all but one vertex of SH, say c, have degree two and c has
degree one. Thus, if A1 = (SG×SH)− ({a}×SH)− (SG×{c}), A2 = (SG×{c})− ({a}×{c}), A3 = ({a}×SH)− ({a}×{c})
and A4 = {a} × {c}, then

M0(G ×H) ≥
∑

(1,h)∈SG×SH

⌈
δG(1)δH(h)

2

⌉
=

∑
(1,h)∈A1

2 +
∑

(1,h)∈A2

1 +
∑

(1,h)∈A3

1 +
∑

(1,h)∈A4

⌈1
2

⌉
= 2(M0(G) − 1)(M0(H) − 1) + (M0(G) − 1) + (M0(H) − 1) +

⌈1
2

⌉
= 2M0(G)M0(H) −M0(G) −M0(H) + 1.
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Now, from Lemma 4.2 we have thatM0(G) = r+1
2 andM0(H) = t+1

2 , which lead toM0(G ×H) ≥ rt+1
2 .

Finally, like in the Cases 4 and 5, from Theorem 2.2 we have that

M0(G ×H) ≤ rt + 2
r + 1

2
t + 1

2
− r

t + 1
2
− t

r + 1
2

=
rt + 1

2
,

which completes the proof.
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